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A b s t r a c t 

Introduction: The molecular docking method was found to calculate the bi-
ological activity of the 2′-hydroxy-5′-methyl-3′-nitroacetophenone (2′-H-5′-
M-3′-N) molecule against the enzymes studied. 
Material and methods: In these calculations, the enzymes used were glu-
tathione reductase (GR) and glutathione S-transferase (GT). After the mod-
eling calculations were completed, the ADME/T parameters were examined 
to calculate the future drug use properties of the 2′-H-5′-M-3′-N molecule. 
To survey the antioxidant properties of 2′-H-5′-M-3′-N, the DPPH test was 
used. Several human lung adenocarcinoma cell lines, i.e., lung moderately 
differentiated adenocarcinoma (LC-2/ad), lung poorly differentiated adeno-
carcinoma (PC-14), and lung well-differentiated bronchogenic adenocarci-
noma (HLC-1) cell lines, were used to determine the anticancer properties 
of the molecule. 
Results: Cell viability of 2′-H-5′-M-3′-N was very low against PC-14, LC-2/ad, 
and HLC-1 cell lines without any cytotoxicity towards the normal cell line. 
The IC50 values of 2′-H-5′-M-3′-N against LC-2/ad, PC-14, and HLC-1 cell lines 
were 475, 250, and 691 µg/ml, respectively. The best anti-human lung can-
cer properties of 2′-H-5′-M-3′-N against the above cell lines were observed 
in the case of the PC-14 cell line.  
Conclusions: 2′-H-5′-M-3′-N was found to have significant antioxidant and 
anti-human lung cancer properties. It appears that the anti-human lung car-
cinoma effect of 2′-H-5′-M-3′-N is due to its antioxidant effects.

Key words: 2′-hydroxy-5′-methyl-3′-nitroacetophenone, human lung 
cancer, enzyme inhibition, molecular modeling.

Introduction

Glutathione S-transferase (GST) is an enzyme involved in the detoxi-
fication of the liver that can catalyze the binding reaction of glutathione 
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(GSH) with various exogenous toxic compounds. 
It is found mainly in the liver and kidney, and in 
small amounts in the human stomach, ovary, 
breast and other organs. In addition to binding to 
GSH, it acts as a catalyst for conjugate reactions in 
protein purification. Given the importance of GST 
in biology and clinical practice, people have begun 
to devote themselves to the research of GST de-
tection methods [1–4]. Glutathione reductase (GR) 
is the only enzyme that catalyzes the recovery of 
GSH from GSSG in an NADPH-dependent manner. 
Inhibition or activation of GR causes problems in 
the antioxidant system and many enzymatic reac-
tions; studies report that this condition may be as-
sociated with aging and certain diseases such as 
cystic fibrosis, HIV, neurodegenerative disorders, 
and cancer. Compared to other enzymes in the 
glutathione system, GR activity has been found 
to decrease significantly with age and in various 
diseases [5–7].

When many studies in recent years are exam-
ined, the results of experimental and theoretical 
studies are seen together [8]. It has been ob-
served that the studies made in this way sound 
better quality and realistic, because it has been 
observed that the results obtained support each 
other, thus increasing the accuracy of the results. 
In these studies, it was observed that the numeri-
cal values of the results obtained from theoretical 
studies were very close to each other. Therefore, 
when theoretical calculations are made before 
experimental studies, it has been seen that time 
will be an important guide for experimental stud-
ies. In this direction, it is possible to synthesize 
more effective and active compounds with the-
oretical calculations [9]. In theoretical calcula-
tions, molecular docking is the best method to 
compare the biochemical activities of molecules 
against enzymes [10]. In the calculations made 
by the molecular docking method, theoretical 
biochemical activity values of molecules against 
enzymes are found. It is possible to compare the 
biological activities of other molecules with the 
numerical values obtained as a result of the cal-
culation. Many parameters are obtained in the 
calculations of the 2′-hydroxy-5′-methyl-3′-nitro-
acetophenone (2′-H-5′-M-3′-N) molecule against 
enzymes.

Significant information is provided about the 
biochemical activities of compounds with the 
parameters obtained as a result of these calcula-
tions. After these calculations, ADME/T (distribu-
tion, metabolism, excretion, absorption, and tox-
icity) analysis of the 2′-H-5′-M-3′-N molecule was 
performed. With the ADME/T analysis, attempts 
are made to predict theoretically the effects and 
reactions of drug molecules in human metabolism 
in cells and tissues. Attempts are made to predict 

these effects and responses with the numerical 
values of the parameters found by the ADME/T 
calculations in the molecular docking calculations. 
The numerical value of each parameter obtained 
gives important information about the action and 
reaction of molecules in different organs or tis-
sues. These results give the properties of the mol-
ecule to be used as a drug in the future [11]. 

We investigated 2′-H-5′-M-3′-N in cytotoxicity 
studies against common human lung cancer cell 
lines, i.e., LC-2/ad, PC-14, and HLC-1 cell lines, and 
in vitro enzyme inhibition with molecular model-
ing studies. 

Material and methods

Material

Bovine serum, antimycotic antibiotic solution, 
2,2-diphenyl-1-picrylhydrazyl (DPPH), dimethyl 
sulfoxide (DMSO), decamplmaneh fetal, 4-(dime-
thylamino) benzaldehyde, hydrolysate, Ehrlich 
solution, borax-sulfuric acid mixture, and DMED 
were obtained from Sigma-Aldrich (USA).

Biological assays

Inhibition assays of GST. Phosphate buffer  
(415 µl, 0.1 M pH 6.6), GST (10 µl, 0.148 mg/
ml), and inhibitor (12.5 µl in DMSO) were added 
to a 500 µl cuvette, and the solution was mixed 
well. After incubation at ambient temperature for  
5 min, CDNB (12.5 µl, 40 mM in EtOH) and GSH 
(50 µl, 10 mM) were added and quickly mixed 
well. Absorbance was measured at 340 nm at 
20°C for 5 min [12] and performed conforming to 
previous studies [13–15].  

Docking studies

An important method used to calculate the 
theoretical biochemical activities of compounds 
against enzymes is molecular modeling. In the cal-
culations made by the molecular docking method, 
many parameters are obtained to compare the 
biochemical activities of compounds [16]. These 
parameters are very significant parameters to ex-
plain the theoretical biological activities of com-
pounds [17]. In order to calculate the biological ac-
tivity of the 2′-H-5′-M-3′-N molecule, calculations 
were made with many enzymes. In this study, the 
enzymes glutathione reductase (GR) and glutathi-
one S-transferase (GT) were used for the 2′-H-5′-
M-3′-N molecule. Molecular docking calculations 
to calculate the biochemical activity of the 2′-hy-
droxy-5 nit-methyl-3′-nitroacetophenone mole-
cule were performed using the Maestro Molecular 
modeling platform (version 12.2) by Schrödinger. 
Proteins and 2′-H-5′-M-3′-N molecules must be 
prepared for calculations using the Maestro Mo-
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lecular modeling platform (version 12.2) by the 
Schrödinger program. In docking calculations, 
each stage is completed by carrying out different 
procedures for molecules and enzymes. Firstly, 
the Gaussian software program [18] was used to 
obtain optimized structures of molecules. Using 
these optimized structures, all calculations were 
made with the Maestro Molecular modeling plat-
form (version 12.2) by Schrödinger, LLC [19], which 
comprises many modules. In the first one, the pro-
tein preparation module [20] is used to prepare 
the enzymes formed by proteins for calculations. 
In the next module, the LigPrep module [21] was 
used to prepare the 2′-H-5′-M-3′-N molecule for 
calculations.

In the next module, the Glide ligand docking 
module [22] was used to interact with the mole-
cule and enzymes. OPLS3e assay was used in all 
calculations for docking calculations of proteins 
and compounds in all modules used. After the 
docking calculations, ADME/T analysis (distribu-
tion, metabolism, absorption, excretion and tox-
icity) was performed to examine the future drug 
properties of the molecule. The Qik-prop module 
[23] of the Schrödinger software was used for  
ADME/T analysis. 

Determination of the antioxidant activities 
of 2′-H-5′-M-3′-N

Analysis of antioxidant capacity of the DPPH 
radical method is a well-known test for measuring 
the antioxidant power of various compounds. The 
method is based on the reduction of free radical 
DPPH by antioxidants in the absence of other free 
radicals in the environment. A compound is gener-
ally compared to a known antioxidant compound 
such as butylated hydroxytoluene (BHT). Analy-
sis of antioxidant capacity by the DPPH method 
is a test that has received much attention in the 
fields of food, pharmaceuticals and biotechnology 
and is used to develop and introduce new antiox-
idants. The method is based on the reduction of 
free radical DPPH by antioxidants in the absence 
of other free radicals in the environment, which 
results in color in the environment whose inten-
sity can be measured by spectroscopy. DPPH is 
a stable free radical that has an unpaired electron 
on one of the nitrogen bridge atoms. Radical in-
hibition of DPPH is the basis for assessing anti-
oxidant capacity [24]: DPPH◦  (purple) + H – A → 
DPPHH (yellow) + A◦.

DPPH is a  stable radical whose methanolic 
solution has a purple color that shows the high-
est light absorption at 519–595 nm. The basis 
of this method is that the DPPH radical acts as 
an electron acceptor of a donor molecule such as 
an antioxidant, thus converting DPPH to DPPH2. 
In this case, the purple color of the environment 

turns yellow, so the absorption intensity decreas-
es to 595 nm. Antioxidant properties can be deter-
mined by measuring the decrease in adsorption 
intensity by spectroscopy [24].  

In the present study to measure the antioxi-
dant properties of 2′-H-5′-M-3′-N, 2 ml of DPPH 
(100 µM) was dissolved in methanol with 2 ml 
of 2′-H-5′-M-3′-N at the concentrations of µg/ml.  
The resulting mixture was held at 25°C for 30 min. 
Then the samples absorbance was measured at 
520 nm by a  spectrophotometer (Spectramax 
Gemini XS; Molecular Devices, Sunnyvale, CA) and 
the amount of antioxidant effect was determined 
by the following formula [24]: %Inhibition = [(Ablank 
– Asample)/Ablank] × 100.

The blank sample consisted of a  mixture of  
2 ml of 2′-H-5′-M-3′-N and 2 ml of methanol, and 
a  sample containing 2 ml of DPPH and 2 ml of 
2′-H-5′-M-3′-N with the concentrations used was 
considered as a  negative control. BHT was also 
used as a positive control [24].  

Calculating the half maximal inhibitory con-
centration (IC50) is an excellent way to compare 
drug activity. The dose in which 50% of the final 
activity of the drug occurs is the criterion for mea-
surement and comparison. In this test, the value 
of IC50 for different repetitions of the test was also 
calculated and was compared with IC50 of the BHT 
molecule, which is an indicator of antioxidant ac-
tivity. The closer IC50 is to BHT, the stronger the 
antioxidant activity. In the following experiments, 
the IC50 of 2′-H-5′-M-3′-N was calculated by plot-
ting the inhibition percentage curve against the 
2′-H-5′-M-3′-N concentration. In the next step, 
a serial dilution was prepared from each sample 
and IC50 of three separate samples was measured 
and its mean was calculated. All experiments 
were performed three times [24].  

Determination of anti-human lung cancer 
effects of 2′-H-5′-M-3′-N 

In this assay, different human lung cancer cell 
lines i.e., lung poorly differentiated adenocarci-
noma (PC-14), lung moderately differentiated 
adenocarcinoma (LC-2/ad), and lung well-differ-
entiated bronchogenic adenocarcinoma (HLC-1) 
cell lines and also a normal cell line (HUVEC) were 
used to study the cytotoxicity and anti-human 
lung cancer potential of the 2′-H-5′-M-3′-N using 
the common cytotoxicity test, i.e., MTT assay in in 
vitro condition. 15 ml of RPMI 1640 medium con-
taining 10% FSC (10 mg/ml penicillin and 100 mg/
ml streptomycin) in a culture flask was placed in 
a CO2 incubator for 2 h to equilibrate the medium. 
Under safe conditions (using insulated gloves and 
goggles) the frozen cell vial was removed from the 
nitrogen storage tank. In order to avoid the pos-
sibility of explosion of the vial (due to the possi-
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ble entry of liquid nitrogen into the vial), (loosen 
the lid, after disinfecting the outer surface of the 
vial with 70% alcohol, under the hood to remove 
nitrogen gas. Close the vial lid again and immedi-
ately melt it in a pan at 37°C. The melting process 
should be completed in about 1 min and the cells 
should not be overheated. The medium was add-
ed dropwise to the vial and then its contents were 
taken out and centrifuged with the medium in 15 
ml sterile test tubes. After centrifugation, the su-
pernatant was removed and the cells were sus-
pended again in the medium and transferred to 
a pre-prepared flask containing the medium and 
FBS and incubated [25, 26]. 

Cell lines were used in RPMI 1640 medium 
containing penicillin (100 IU/ml), streptomycin  
(100 IU/ml), glutamine (2 mmol) and 10% fetal 
bovine serum (FBS). They were incubated at 37°C 
and in an atmosphere containing 0.5 CO

2. Cells 
began to grow in 75 cm2 T-flasks in 15 ml of me-
dium with an initial number of 1–2 × 106 cells. Af-
ter three days and covering the flask bed with the 
cells, the adhesive layer on the bottom of the flask 
was separated enzymatically using trypsin-verson 
and transferred to a sterile test tube for 10 min 
at 1200 rpm. The cells were then suspended in 
a  fresh culture medium with the help of a  Pas-
teur pipette and the suspension was poured into 
100-well plate flat wells (for cell culture) using an 
8-channel sampler of 100 µl. One column of wells 
was kept cell-free as a blank containing only cul-
ture medium. Another column contained culture 
medium and healthy cells and other columns con-
tained culture medium and cell line cells. One of 
these columns, which contained culture medium 
and cells and did not contain 2′-H-5′-M-3′-N, was 
considered as a control [25].

The plates were incubated in the incubator 
for 24 h to return the cells to normal from the 
stress of trypsinization. After this time, suitable 
dilutions of the prepared 2′-H-5′-M-3′-N (0-1000 
µl/ml) and 100 µl of each dilution were added in 
columns to the plate wells. (Thus, the final con-
centration of the studied compound in the wells 
was halved. Therefore, the concentrations were 
prepared twice as high to reach the final concen-
tration after being added to the well.) The cells 
were incubated for 37 h at 37°C and 5% CO

2 in 
the atmosphere. After 72 h, 20 µl of MTT solu-
tion (5 mg/ml) was added to each well. The plates 
were incubated for 3 to 4 h and then the residue 
was removed and 100 µl of DMSO was added to 
each well to dissolve the resulting formazan. After 
10 min, using shaking of the plates, the optical 
absorption of formazan at 570 nm was read us-
ing a plate reader. Wells containing cells without 
2′-H-5′-M-3′-N were considered as a control and 
the optical density of wells without cells and only 
culture medium were considered as a blank. The 

percentage of cell viability was calculated using 
the following formula [26]: 

Cell viability (%) =  × 100Sample A.
Control A.

Qualitative measurement

After collecting data, Minitab statistical soft-
ware was used for statistical analysis. Evaluation 
of antioxidant results in a completely randomized 
design and comparison of means was by Duncan 
post-hoc test with a  maximum error of 5%. To 
measure the percentage of cell survival in factorial 
experiments with the original design of complete-
ly randomized blocks and compare the means, the 
Duncan post-hoc test with a  maximum error of 
5% was used. The 50% cytotoxicity (IC50) and 50% 
free radical scavenging (IC50)) were estimated with 
ED50 plus software (INER, V: 1.0). Measurements 
were reported as mean ± standard deviation. 

Results and Discussion

Enzyme results

IC50 values for these two enzymes were ob-
tained at the micromolar level. IC50 values for GST 
and GR were determined as 165.31 and 98.71 
µmol, respectively. GSTs are a broad family of di-
meric enzymes responsible for cell detoxification, 
thus protecting the cell from cytotoxic and oxida-
tive stress. They catalyze the conjugation of GSH 
to a wide variety of xenobiotic electrophiles such 
as prostaglandins, quinones, and base propenals, 
making them more soluble in water and easily 
removed from the cell. GSTs are a potential drug 
target in cancer therapy, where resistance to che-
motherapeutic drugs is directly associated with 
overexpression of GSTs in tumor cells and para-
sitic diseases such as schistosomiasis and malar-
ia [27, 28]. Glutathione reductase (GR) is an im-
portant antioxidant enzyme required to maintain 
the GSH/GSSG ratio by catalyzing the recovery of 
reduced glutathione (GSH) from oxidized glutathi-
one (GSSG). Because of this vital task, inhibition of 
GR is an important target in the treatment of many 
diseases, so we aimed to identify natural and nov-
el GR inhibitors to guide drug design [29, 30]. 

Molecular modeling results

As a  result of molecular docking calculations, 
many parameters of the 2′-H-5′-M-3′-N molecule 
against enzymes were found [31]. As a  result of 
the calculations, the most important parame-
ter found is the docking score. It should be well 
known that the molecule with the most negative 
numerical value of the docking score parameter 
obtained as a  result of the interaction between 
molecules and enzymes has higher biological ac-
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tivity than other molecules [32]. As the interaction 
between the 2′-H-5′-M-3′-N molecule and the en-
zyme increases, the increase in the biological ac-
tivity value of the 2′-H-5′-M-3′-N molecule shows 
both experimental and theoretical results. These 
interactions are given in Figure 1. 

Enzymes used for this comparison are gluta-
thione reductase (GR) (PDB ID: 4GRT) and gluta-
thione S-transferase (GT) (PDB ID: 2GSS). The pa-
rameters of the molecule obtained as a result of 
interactions with all enzymes are given in Table I.

Many other parameters were found in the cal-
culations. These parameters are used to explain 
the interaction between 2′-H-5′-M-3′-N and the 
enzyme. Other parameters found as a  result of 
the calculations are Glide hbond, Glide evdw, and 
Glide ecoul parameters, which give numerical val-
ues of hydrogen bonding, Van der Waals, and Cou-
lomb interactions, which are many interactions 
between molecules and enzymes [33]. On the oth-
er hand, the last remaining parameters are Glide 
emodel, Glide energy, Glide einternal, and Glide 
posenum, which give numerical values about the 
interaction between molecule and enzyme [34].

After the docking calculations made to com-
pare the biological activities of the molecules, the 

drug properties of the 2′-H-5′-M-3′-N molecule 
were investigated. As a result of the ADME/T anal-
ysis, many parameters were found for the mole-
cule. These calculated parameters give the effects 
and responses of molecules in tissues or organs in 
human metabolism [35]. As a result of this analy-
sis, each parameter has a numerical value in dif-
ferent organs or tissues. 

Figure 1. Presentation of interactions of nitroacetophenone with glutathione S-transferase (A) and glutathione 
reductase (B)

Table I. Numerical values of the docking parame-
ters of molecule against enzymes

Parameter GR GT

Docking score –5.96 –4.96

Glide ligand efficiency –0.43 –0.35

Glide hbond –0.19 –0.32

Glide evdw –23.77 –16.55

Glide ecoul –1.85 –5.73

Glide emodel –36.58 –31.44

Glide energy –25.62 –22.27

Glide einternal 0.08 0.03

Glide posenum 66 58
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Among all ADME/T parameters, two important 
parameters are the rule of five and the rule of 
three. The rule of five [36] and rule of three [37] 
parameters are more important than any oth-
er parameter. The numerical value of these two 
parameters is expected to be zero. These are the 
two most important parameters in ADME/T calcu-
lations. If the conditions for these two parameters 
are not met, the molecule is considered unsuitable 
to be a drug. 

Therapeutic capacities of 2′-H-5′-M-3′-N 

Free radicals are highly active compounds with 
single or unpaired electrons. These compounds 
are made by metabolic functions in the body 
during the reaction of oxygen with certain mole-
cules. Free radicals tend to gain or lose an elec-
tron so that the number of electrons is even. Free 
radical damage occurs when radicals collide with 
other molecules to find electrons [1]. Free radicals 
often take an electron from a  nearby molecule 
and convert it into a  new free radical, and then 
the new free radical repeats the reaction chain se-
quentially, causing cell damage and DNA damage. 
DNA damage can lead to a variety of effects, in-
cluding premature aging and cancer. Free radicals 
are produced in the body due to the body’s natu-
ral response to pathogens, metabolism, especially 
lipid oxidation, stress, air pollutants, high-energy 
electromagnetic waves such as X-rays, foods such 
as hydrogenated vegetable oils and some drugs 
such as doxorubicin [24].

In order to fight the free radicals produced, 
the cells in the body have intracellular defense 
due to the presence of the enzymes superoxide 
dismutase, catalase and glutamine peroxidase. In 
addition, compounds such as vitamins and min-
erals (selenium and zinc) with their antioxidant 

behavior cause the elimination of free radicals 
and thus reduce their harmful effects on the body 
[38]. Antioxidants inhibit the free radicals’ activi-
ty or cause them to be removed, and protect the 
cells of the body from the damaging effects of the 
free radicals. Hence, they fight the aging process 
and various diseases. These substances can inhib-
it the formation of free radicals in the body and, 
if formed, reduce their impact on the body [1, 24]. 
In fact, antioxidants are compounds that are used 
to prevent or slow down the damage caused by 
oxidative reactions in the body, and they act as 
neutralizers of free radicals and therefore prevent 
damage from these compounds in the body [24, 
38]. These compounds, on the one hand, reduce 
the risk of cardiovascular disease and stroke in 
the first place, and on the other hand, prevent the 
progression of cancers that cause DNA damage. 
Despite the presence of various antioxidants in 
plasma, the body’s immune system alone is not 
able to eliminate free radicals created in the body; 
therefore, it needs to provide antioxidants from 
external sources that are provided through food 
sources. Therefore, there is a need for strong an-
tioxidants with lower toxicity and greater effec-
tiveness. Antioxidants are also used in industry as 
food preservatives to prevent spoilage and discol-
oration of foods, thus increasing the shelf life of 
foods. Plant extracts are rich in antioxidant com-
pounds [39–41].

Now, turning our attention to investigate the 
bioactivity of 2′-H-5′-M-3′-N a  concentration-de-
pendent DPPH radical scavenging effect of 2′-H-5′-
M-3′-N was observed against BHT as a reference. 
In the antioxidant test, the IC50 values of butylated 
hydroxytoluene and 2′-H-5′-M-3′-N were 168 and 
205 µg/ml, respectively (Figure 2).  

Oxidation from reactive oxygen species can 
cause cell membrane disintegration, damage to 
membrane proteins, and DNA mutation, the re-
sult of which is the onset or exacerbation of many 
diseases such as cancer, liver damage, and cardio-
vascular disease. Although the body has a defense 
system, constant exposure to chemicals and con-
taminants can lead to an increase in the number of 
free radicals outside the body’s defense capacity 
and irreversible oxidative damage [42]. Therefore, 
antioxidants with the property of removing free 
radicals play an important role in the prevention 
or treatment of oxidation-related diseases or free 
radicals. Extensive molecular cell research on can-
cer cells has developed a targeted approach to the 
biochemical prevention of cancers whose goal is 
to stop or return cells to their pre-cancerous state 
without any toxic doses through nutrients and 
drugs. Numerous studies have been performed 
on the use of natural compounds as anti-cancer 
agents in relation to appropriate antioxidant activ-
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ity [42–44]. It seems the high anti-lung adenocar-
cinoma properties of 2′-H-5′-M-3′-N are related to 
its antioxidant activities. Our successful efforts to 
utilize 2′-H-5′-M-3′-N in adenocarcinoma studies 
certainly shed light on future studies in this area. 

In this present study, the cytotoxicity of 2′-H-5′-
M-3′-N was explored by studying its interaction 
with normal (HUVEC), LC-2/ad, PC-14, and HLC-1 
cell lines by MTT assay for 48 h. The interactions 
expressed as cell viability (%) were observed at 
different 2′-H-5′-M-3′-N concentrations (0–1000 
µg/ml) with the four cell lines which are shown 
in Figure 3. 

In all the cases the % cell viability decreases 
with increasing 2′-H-5′-M-3′-N concentrations. 
The IC50 values of 2′-H-5′-M-3′-N against LC-2/ad, 
PC-14, and HLC-1 cell lines were 475, 250, and 
691 µg/ml, respectively (Table II). Thus, the best 
cytotoxicity results and anti-human lung cancer 

potential of our 2′-H-5′-M-3′-N was observed in 
the case of the PC-14 cell line.  

In conclusion, the biological activity of the 
2′-H-5′-M-3′-N molecule against enzymes was de-
termined by docking calculations. The numerical 
values of these parameters were compared with 
other molecules. Then, ADME/T analysis of the 
2′-H-5′-M-3′-N molecule was performed. With this 
analysis, the ADME/T parameters of the 2′-H-5′-
M-3′-N molecule show that it is safe to use it as 
a drug in the future. In this direction, the 2ley-hy-
droxy-5′-methyl-3′-nitroacetophenone molecule 
will progress to become a drug with future in vivo 

Figure 3. Anti-human lung cancer properties (cell viability (%)) of 2′-H-5′-M-3′-N (concentrations of 0-1000 µg/ml) 
against HUVEC (I), lung poorly differentiated adenocarcinoma (PC-14: II), lung well-differentiated bronchogenic 
adenocarcinoma (HLC-1: III), and lung moderately differentiated adenocarcinoma (LC-2/ad: IV) cell lines. The num-
bers indicate the percent of cell viability in the concentrations of 0–1000 µg/ml of 2′-H-5′-M-3′-N against several 
human lung cancer cell lines
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Table II. IC50 of 2′-H-5′-M-3′-N in the anti-human 
lung cancer test

HUVEC PC-14 HLC-1 LC-2/ad

IC50 [µg/ml] – 250 ±0a 691 ±0c 475 ±0b
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and in vitro studies. 2′-H-5′-M-3′-N was also as-
sessed in biological applications such as radical 
scavenging and anticancer (adenocarcinoma) 
activities. In the antioxidant test, the IC50 values 
of butylated hydroxytoluene and 2′-H-5′-M-3′-N 
were 168 and 205 µg/ml, respectively. 2′-H-5′-
M-3′-N exhibited good antioxidant properties, 
even better than the reference standard mole-
cule. It also showed significant cytotoxic activities 
against common human lung cancer cell lines, i.e., 
LC-2/ad, PC-14, and HLC-1. 
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